Multiresolution Amalgamation: Dynamic Spatial Data Cube Generation
نویسندگان
چکیده
Aggregating spatial objects is a necessary step in generating spatial data cubes to support roll-up/drill-down operations. Current approaches face performance bottleneck issues when attempting to dynamically aggregate geometries for a large set of spatial data. We observe that changing the resolution of a region is reflective of the fact that the precision of spatial data can be changed to certain extent without compromising its usefulness. Moreover most spatial datasets are stored at much higher resolutions than are necessary for some applications. The existing approaches, which aggregate objects at a base resolution, often results in a processing bottleneck due to extraneous I/O. In this paper, we develop a new aggregation methodology that can significantly reduce retrieval (I/O) costs and improve overall performance by utilising multiresolution data storage and retrieval techniques. Topological inconsistencies that may arise during resolution change, which are not handled by current amalgamation techniques, are identified. By factoring these issues into the amalgamation query processing, the retrieval loads can be further reduced with guaranteed topological correctness. Experimental results illustrate significant savings in data retrieval and overall processing time of dynamic aggregation.⋅
منابع مشابه
Multiresolution Cube Estimators for Sensor Network Aggregate Queries
In this work we present in-network techniques to improve the efficiency of spatial aggregate queries. Such queries are very common in a sensornet setting, demanding more targeted techniques for their handling. Our approach constructs and maintains multi-resolution cube hierarchies inside the network, which can be constructed in a distributed fashion. In case of failures, recovery can also be pe...
متن کاملMultiresolution and Hierarchical Analysis of Astronomical Spectroscopic Cubes using 3D Discrete Wavelet Transform
The intrinsically hierarchical and blended structure of interstellar molecular clouds, plus the always increasing resolution of astronomical instruments, demand advanced and automated pattern recognition techniques for identifying and connecting source components in spectroscopic cubes. We extend the work done in multiresolution analysis using Wavelets for astronomical 2D images to 3D spectrosc...
متن کاملMultiresolution Data Aggregation and Analytical Exploration of Large Data Sets
Analytical processing of large relation data demands for a shared compact representation of data in multiple resolutions in order to efficiently facilitate the incurring data aggregation, data cube, and range queries. This paper addresses technical problems of multi-resolution data aggregation and investigates enabling technologies for efficient analytical processing of large data sets. In part...
متن کاملOne-to-Two Digital Earth
The digital Earth framework is a multiresolution 3D model used to visualize location-based data. In this paper, we introduce a new digital Earth framework using a cube as its underlying polyhedron. To create multiresolution, we introduce two types of 1-to-2 refinement. Having a smaller factor of refinement enables us to provide more resolutions and therefore a smoother transition among resoluti...
متن کاملPerceptual tone-mapping operator based on multiresolution contrast decomposition
Tone-mapping operators (TMO) are used to display high dynamic range (HDR) images in low dynamic range (LDR) displays. Many computational and biologically inspired approaches have been used in the literature, being many of them based on multiresolution decompositions. In this work, a simple two stage model for TMO is presented. The first stage is a novel multiresolution contrast decomposition, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004